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Non-equilibrium relaxation at a tricritical point 

H K Janssen and K Oerding 
Institut fiir Theoretische Physik UI, Heinrich-Heine-Universitst Diisseldorf, Universit3,ts- 
straBe 1, 40225 Diisseldod Germany 

Received 20 September 1993 

Abstract. We study the purely relaxarional tricritical dynamics of a nonconserved order 
parameter (model A) in the upper critical dimension d, = 3 and in 3 - E dimensions. We 
are especially intwesred in the relaxation, starking from a macroscopically prepared initial stare 
with a small correlation length. Using the methods of renormalized field theory we obtain the 
scaling behaviour of the correlation and response funclions and study the nonlinear relaxation 
of the order parameter MO). In three dimensions M(t) displays a crossover from the purely 
logarithmic shod-tirne~ behaviour M(t) - (ln(t/to))-' to a t-L/4 power law with logarithmic 
corrections. 

For dimensions d < 3 we obtain the exponents which govern the trlcritical relaxation at 
lowesf non-trivial order in E = 3 - d .  The dynamic scaling exponent L is calculated at second 
order in e. 

1. Introduction 

The properties of thermodynamic systems near hicritical points have been thoroughIy studied 
over recent decades [l]. A considerable part of the progress achieved in this field is due 
to the application of renormalization group methods which permit a deeper understanding 
of scaling behaviour and constitute a tool for the systematic calculation of (tri-)critical 
exponents, logarithmic corrections and scaling functions. 

Siggia and Nelson [2]  have analysed  the^ tricritical dynamics of 3He-4He mixtures 
and antiferromagnetic systems near four dimensions and obtained scaling functions which 
describe the crossover from hicritical to A-line behaviour. However, since in this approach 
the tiicritical point corresponds to a Gaussian fixed point the logarithmic corrections to the 
mean-field-like behaviour in three dimensions cannot be found. 

In this paper, we study the hicritical purely relaxational dynamics of a non-conserved 
order parameter (model A) in the upper critical dimension d, = 3 and in 3 - E  dimensions. 
Our special interest is focused on the relaxation, starting from a non-equilibrium initial 
state with short-range correlations. Only a few years ago it was shown that 'even the 
(macroscopically) early stage of  the critical relaxation displays universal scaling behaviour 
[3,4]. We extend these studies to the c a e  of tricritical points and find that the order 
parameter M ( t )  ('magnetization') in three dimensions is given by 

where 
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and a is an universal exponent. For a one-component order parameter a = 3/(40ir). Hence 
the order parameter relaxation shows logarithmic behaviour at short times (but large with 
respect to microscopic relaxation) to << t << MC4 and a crossover to tr1I4 behaviour with 
logarithmic corrections. 

In addition we obtain the dynamic scaling exponent z for d c 3 at second order in 

H K Janssen and K Oerding 

~ = 3 - d .  

2. The model 

We consider the purely relaxational order parameter dynamics near a tricritical point without 
any coupling to a conserved density. In this case the only slow mesoscopic variable is the 
order parameter field itself. The analysis starts from the Langevin equation 

where s = (sl, . . . , s,J denotes the n-component order parameter field with O(n) symmetry, 
and < = (0, . . . , <J is a Gaussian white noise with zero mean and the correlations 

(<&, t)<&q(z', I')) = 2hS,pS(z - z')S(t - t'). (4) 

The Hamiltonian 7i is given by 

1 r 1  8 2 2  f 
-s2 + + -(s ) + - ( s ~ ) ~  . 2 2  4! 6!  

In mean-field theory the tricritical point corresponds to r = g = 0. 
formulation for the tricritical dynamics is given by the stochastic functional [ 4 7 ]  

An equivalent 

where i is a Martin-Siggia-Rose response field [SI. The weight exp(-Z) integrated over 
the response field S may be interpreted as a path probability distribution of the stochastic 
process {s(z, t)) starting from an initial configuration {so(z)}. 

Since we wish to study he influence of initial conditions corresponding to a 
macroscopically prepared initial state with short-range correlations we also average over 
s&) = s(z, 0) with a probability distribution exp(-X(')[sol), where [3,4] 

X'"[S0] = ddXTo/2(so(Z) -MO)'. (7) s 
By naive dimensional analysis, so - p2 (where @ is an external momentum scale), i.e. r;' 
corresponds to an irrelevant parameter, and the distribution exp(-7f(')) is equivalent (up to 
corrections to scaling) to the sharp initial condition so@) = MO. 
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Figure 1. Contribution to PI,, at lowest non-trivial order. 

3. Renormalization group analysis 

Given ,7 and X"', the program for studying the tricritical relaxation follows the lines taken 
in [3,4,9, IO]. Upon expanding exp(-,7) in powers o f f  and g we obtain the perturbation 
series of the Green functions 

(8) i-13 G;,,,((G t)) = ([io1 [SI [SI,,) 

where i response fields are fixed to t = 0. While the free propagator 

~ , ( t  - t') = e(t - t') exp(-h(r~+ q2)(t - t')) 

C&, t') = C $ q t  - f') + C!'(t, t') 

(9) 

remains unchanged by the initial conditions, the correlator is given by 

(10) 

where 

is the equilibrium correlator, and 

From equations (9)-(12) we see that we can set SO = &/To, io = in the correlation 
functions. Thus only the Green functions (8) have to be studied. 

We use dimensional 
regularization to render the ultraviolet divergent integrals finite and absorb the remaining 
poles at e = 0 into reparametrizations of the coupling constants and fields: 

The renormalized field theory follows the usual lines [Ill.  

s + J =-z,y,'/2S 

h + = (Z,T/ZF)'izh f + f = B ; 2 Z , ~ 3 Z , ~ p 2 F  (13) 

3 -+ ; = zys 

g + = B;~z,;~z,u~' r + ? = Z,;'(Zrr + WE'). 

The factor Be = r((l - 6)/2)/(4~)'/~ has been introduced for convenience. 
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The Z-factors defined above suffice to render equilibrium Green functions finite. 
However, the non-equilibrium initial conditions break the translational invariance with 
respect to time and require an additional renormalization of the field SO: 

(14) 
e so + so = (zozj)'/2so. 

At lowest non-trivial order the 2-factors are 

Z , = l + -  4(n + 4, U + O(U*) 
156 

These renormalization factors are already known from the work of Lawrie and Sarbach [l]. 
The renormalization constant Zj  is obtained by requiring that the single-particle irreducible 
equilibrium vertex function r1.1 = (Z.7Zj)1flf1,1 be finite in d = 3. The evaluation of the 
Feynman graph (figure 1) yields 

where 

I = lm $(er f (~ ) )~  = 0.648555. (21) 

(Here erf is the error function [U].) 

insertions of the field Z0 we have to render the response function 
In order to obtain well-defined renormalized non-equilibrium Green functions with 

G;,l(z, f )  = ( Z s Z ~ Z o ) - ' / z ~ ~ , ~ 8 c ,  0 (22) 

finite. At first order in f we find (for 7;' = MO = 0) 

The corresponding Feynman graph is shown in figure 2. Equation (23) yields for the 
Z-factor 



Non-equilibrium reluxation at a fricritical point 719 

Figure 2. Contribution to &A,, at first order in the j6 coupling. The hatched area represents 
f = 0. 

We can now exploit the p independence of the bare Green functions 

N.N = (ZoZ,)i12Z~12Z,~12G& N , N  (25) 

to obtain the renormalization group equations (RCES) 

[paw + ( r K r  + u2Ku,)a, + K , u a ,  + va,, +pa, + (yo + y3)Li2 + y3Ai2 + Y,N/~IG; , ,  = o 
(26) 

for the renormalized functions Gi ,N.  The Wilson functions are defined as derivatives at 
fixed bare parameters: 

d 
ya = p-1 In Z, (a! = 0. S, s, r, u, u) Kr = ys - *!J 0 

KU = 2Ys - Yu - 6 6 = (Y3 - Y s ) / ~  

B = (-2€ + 3y, - Y”)U 

K~~ = 2(1+ u.au)w(l) 

At lowest non-trivial order we have 

and 

with w = I@’)/€ + 0 ( 1 / 2 ) .  

4u + O(U2)) )3 = u(-2€ + - 3n + 22 
15 

15 
K, = 

U + O(u2). 
( n + 2 ) ( n + 4 )  

15n Yo = 
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Below three dimensions the coupling coefficient U possesses the non-trivial fixed point 

+ O ( 2 )  
15 e 

U, = -- 
2 3n+22 

and the solution of the RGE (26) in conjunction with dimensional analysis yields the scaling 
behaviour 

G i , N ( { Z ,  t l ;  T, U, U,; A, f i )  = 1 ~ ~ ~ n t 4 ~ / 2 + ~ ~ l 2 + N ~ l 2 I ( i + E i ~ ~ d + Z ) 1 Z + N ~ d - 2 ~ ~ 2  

x G i , N ( [ l z ,  PtJ ;  l-yr?. Z-"u, U*; A, f i )  (29) 

with the well-known [13, 141 tricritical indices 

The scaling field T in equation (29) is defined as T = r + Au2, where 

The dynamic scaling exponent z = 2 + <* = 2 + (6 - q)/2 and the initial slip exponent 
70 = yo' follow from equations (20) and (24), respectively: 

z = 2 +  cq + Ole') c = 31 - 1 = 0.945666 (34) 

The autocorrelation function C(r) =~(s(m, t )s (z ,  0)) = ~ , ( S O S ( Z ,  0)) at the tricritical point 
is given by 

C(t )  - t-(dlz)to' with 0' = (2 - z - q - qo/Z) /z .  (36) 

For a onecomponent order parameter we have 0' = -36/(40a) + O(c2). This prediction 
may be checked by computer simulations as in 1151. 

In three dimensions, U, = 0, and the scaling behaviour is governed by mean-field 
exponents with logarithmic corrections. The flow equation 

3n + 22 
b = 4- Id?([) = bi(1)' + O(C(l)') dl 15 

leads asymptotically to the solution 

(37) 

5(l)  N l /(bln(l/ l))  for 1 << 1. 
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If we define scaling fields [ 1 J 

5 (n + 2) u2 
6 (6 - n) U 

t = r + (39) 

rs = U/& (40) 

the RGEs yield the scaling of the correlation functions (up to non-universal factors) 

where 

q,, = (6 - n)/[2(3n + 2211 

a = (n + 2)(n + 4)/[8x(3n + 22)]. 

(42) 

(43) 

The scaling behaviour of the autocorrelation function at the tricritical point follows from 

C( t )  = toGA,,(z = 0, t ;  0, 0, U ;  A ,  p) 

= t013 ( ? ) ' G A , ~ ( ~  =o,i2r;o,o.5(1);h,p). (44) 

We now exploit equation (44) choosing 1 - (Ap2f)-'/* << 1. The last condition means that 
t has to be larger than a typical microscopic relaxation time to. In this way we get 

C ( t )  - t-312 (W/to))- ' .  (45) 

So far we have only considered the case of a vanishing initial order parameter MO = 0. 
In order to study the decay of a non-zero order parameter notice that with TOCOSO = ?O [3,4] 
we have 

M ( t )  = (s(z, t ) )  = / DF, s]s(z, t )exp(-r  - 7 ~ 1 )  (46) 

and 

31'" = - ddXMoFo(x) + O(l/~o). (47) 1~ 
Thus we can write M ( f )  in the scaling limit as a power series in MO 
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Choosing again I - (hp*t)-'fl << 1 we find at the tricritical point 
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M ( t )  = (~n( t / ro) ) - '~of ( r ' /~(~n( t / io ) ) -"~o ,  iJ((t / to)-' /z)) .  (49) 
Since for U + 0 only tree diagrams contribute to the Green functions, the scaling function 
f (without the logarithmic corrections) can be calculated by mean-field theory. We have to 
solve the differential equation 

d hv 
-M( t )  = --M(t) 
dr 5! 

with the result 

M ( t )  = Mo(l +constant xvtM,$'14. (51) 
From this result we infer (up to non-universal factors) 

with 

F M ( X )  = 1/(1 +X4)1'4. (53) 

~ ( r )  - Mo(ln(t/to))-" for t << M ; ~  (54) 

Hence the relaxation of the order parameter displays a crossover from the logarithmic 
power law 

to the long-time behaviour 
-114 

- (-1 for f >> MP. (55) 

Below three dimensions a calculation as in [3,4] leads to the scaling form instead of 
equation (52) 

~ ( r )  = ~ ~ t ~ ' f ~ ( t ~ ' ~ ~ )  (56) 
with the exponent 0' given in equation (36). 

4. Conclusions 

In this paper, we have studied the tricritical dynamics of a thermodynamic system with a 
non-conserved order parameter, particularly the non-equilibrium relaxation, starting from an 
initial state with short-range correlations. 

For dimensions d c 3 the decay of an initial order parameter MO # 0 can be described 
by a universal scaling law which exhibits a crossover between two power laws. We have 
calculated the new exponent e', which characterizes the short-time behaviour, to first order 
in E = 3 - d and obtained the dynamic scaling exponent z to second order in E .  

In three dimensions the order parameter relaxation displays a crossover from purely 
logarithmic behaviour at short times t < MO" to a power law with a logarithmic correction 
for f >> ML4. This result may be applicable to antiferromagnets as e.g. dysprosium 
aluminum garnet (DAG) in which the order parameter (staggered magnetization) couples 
directly to an applied magnetic field along the 11111 direction [16]. The induced staggered 
magnetic field is necessary to prepare the initial value MO # 0 of the order parameter. 

Finally, we wish to point out that our results (for d = 2 as well as for d = 3) can be 
verified by computer experiments. 
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