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Non-equilibrium relaxation at a tricritical point
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Ingstitut fiir Theoretische Physik III, Heinrich-Heine-Universitit Diisseldorf, Universitits-
straBe 1, 40225 Diisseldorf, Germany
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Abstract. We study the purely relaxational tricritical dynamics of a non-conserved order
parameter {model A) in the upper critical dimension d. = 3 and in 3 — e dimensions. We
are especially interested in the relaxation, starting from a macroscopically prepared initial state
with a small comelation length. Using the methods of renormalized field theory we obtain the
scaling behaviour of the correlation and response functions and study the nonlinear relaxation
of the order parameter M{(z). In three dimensions M{f) displays a crossover from the purely
logarithmic short-time behavicur M(t} ~ (In(t/tw))~* to a r—/* power law with logarithmic
corrections,

For dimensions d < 3 we obtain the exponents which govern the tricritical relaxation at
lowest non-trivial order in € = 3 — 4. The dynamic scaling exponent z is calculated at second
order in €.

1. Introduction

The properties of thermodynamic systems near tricritical points have been thoroughly studied
over recent decades [1]. A considerable part of the progress achieved in this field is due
to the application of renormalization group methods which permit a deeper understanding
of scaling behaviour and constitute a tool for the systematic calculation of (tri-)eritical
exponents, logarithmic corrections and scaling functions.

Siggia and Nelson [2] have analysed the- tricritical dynamics of *He—*He mixtures
and antiferromagnetic systems near four dimensions and obtained scaling functions which
describe the crossover from tricritical to A-line behaviour. However, since in this approach
the tricritical point corresponds to a Gaussian fixed point the logarithmijc corrections to the
mean-field-like behaviour in three dimensions cannot be found.

In this paper, we study the tricritical purely relaxational dynamics of a non-conserved
order parameter (model A} in the upper critical dimension d; = 3 and in 3 = ¢ dimensions.
Qur special interest is focused on the relaxation, starting from a non-equilibriumn initial
state with short-range correlations. Only a few years ago it was shown that even the
{macroscopically) early stage of the critical relaxation displays universal scaling behaviour
[3.4]. We extend these studies to the case of tricritical points and find that the order
parameter M(¢) (‘magnetization’) in three dimensions is given by

1/4
M) = Mo(In(z/ 1)) Fy ((Ef;/t_u)) (In(z/ to})"’Mo) (1)
where )
1 - forx=0
Fig(z) ~ { @

1/x forx — oo
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and a is an universal exponent. For a one-component order parameter @ = 3/(407). Hence
the order parameter relaxation shows logarithmic behaviour at short times (but large with
respect to microscopic relaxation) f, < 1 < My* and a crossover to 74 behaviour with
Iogarithmic corrections,

In addition we obtain the dynamic scaling exponent z for 4 < 3 at second order in
e=3—d.

2. The model

We consider the purely relaxational order parameter dynamics near a tricritical point without
any coupling to a conserved density. In this case the only slow mesoscopic variable is the
order parameter field itself. The analysis starts from the Langevin equation

§Hfsl .
= =2
ds(@,8) = =hg =+ 5@, 1) 3)
where 5 = (51, ..., s,) denotes the n-component order parameter field with Q(x) symmetry,
and & = (¢),..., &) is a Gaussian white noise with zero mean and the correlations
{Lalm, D)Ep(2/, 1)) = 208,p8 (@ — 2)o(r — 1'). (4)

The Hamiltonian % is given by

Hs = f d4x [%sz + -;-(‘a:rs)2 + ;L‘g-!(sz)2 + é—}(szf} : (5)

In mean-field theory the tricritical point corresponds to r = g = 0. An equivalent
formulation for the tricritical dynamics is given by the stochastic functional [4-7]

T, 5] = f ” dt f d?x§ [8:.5‘ 4 A(r — A)s + %%(szjs + %j—-;-(sz)zs — AE] (6)
0 : .

where 7 is a Martin-Siggia—Rose response field [8]. The weight exp(—.7) integrated over
the response field § may be interpreted as a path probability distribution of the stochastic
process {s{wx, 1)} starting from an initial configuration {so(2)}.

Since we wish to study the influence of initial conditions corresponding to a
macroscopically prepared initial state with short-range correlations we also average over
so(x) = s(zx, 0) with a probability distribution exp(—H®[sp]), where [3,4]

HOsg) = f & 210/ 2s0(2) — M) %

By naive dimensional analysis, 7o ~ 2 (where p is an external momentum scale), ie. 75"

corresponds to an irrelevant parameter, and the distribution exp(—H%) is equivalent (up to
corrections to scaling) to the sharp initial condition sg(x) = M.
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Figure 1. Contribution to f‘u at lowest non-trivial order.

3. Renormalization group analysis
Given J and H®, the program for studying the tricritical relaxation follows the lines taken

in [3,4,9, 10). Upon expanding exp(—7) in powers of f and g we obtain the perturbation
series of the Green functions

G (e, 1) = (5] 517 [s1) : @
where L response fields are fixed to ¢ = 0. While the free propagator

Gglt — 1) =8(t — 'Y exp(—A(r+ g2 (t — ') ®)
remains unchanged by the initial conditions, the correlator is given by

Calt, 1y =CEV(¢ — 1) +CP @, t) (10)
where

CeP—1) = exp(=A(r + g%}t —F')) mn

r+ g2

is the equilibrium correlator, and

cot, 1y = (To_ - 2) exp(—A(r + %)t + ). 12

r+gq

From equations (9)-(12) we see that we can set sp = §5/10, S0 = ASp in the correlation
functions. Thus only the Green functions (8) have to be studied.

The renormalized field theory follows the usual lines [11]. We use dimensional
regularization to render the ultraviolet divergent integrals finite and absorb the remaining
poles at € = 0 into reparametrizations of the coupling constants and fields:

a - s 1/2
s — 3§ =ZM s—>s=Z§’ls

A h=(Z/Z)P f > =B Z,uu* a3
g— &=B'ZZ,uu r—f=ZYZr + wu?).

The factor Be = I'((1 — €)/2)/(47)*/* has been introduced for convenience.
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The Z-factors defined above suffice to render equilibrium Green functions finite.
However, the non-equilibriwm initial conditions break the translatiopal invariance with
respect to time and require an additional renormalization of the field Jo:

5o = §o = (ZoZe)%5. (14)

At lowest non-trivial order the Z-factors are

_ “(n+2)(n+4) 2 3
Zy=1- om0+ 00 (15)
IR L I
z_1+——ﬁ&——u+0@) (16)
Zo=1+ 239 L oed a7
15¢
zv=1+391i22u+0w% (18)
15¢
w=""21 0w (19)

€

These renormalization factors are already known from the work of Lawrie and Sarbach [11.
The renormalization constant Zz is obtained by requiring that the single-particle irreducible
equilibrium vertex function I'y; = (ZSZ_;)’/ZIQ‘M be finite in d = 3. The evaluation of the
Feynman graph (figure 1) yields

(n+2Yn+4)

2 3
150¢ {v"+ O(?) (20)

ZZi=1~—
where
= dx 5 .
I = ;c?(erf(x)) = (0.648 555. (21)
()

{Here erf is the error function [12).)
In order to obtain well-defined renormalized ron-equilibrium Green functions with
insertions of the field § we have to render the response function
G i@, 1) = (Z:Zs Zo)/*G} (=, 1) (22)
finite. At first order in f we find (for T '= My =0)

mtDn+4 f 2
L1 (4m)d (1 — e)?e

f ExGl @7 =0, =0)=1— @he) +0(/2). 23)

The corresponding Feynman graph is shown in figure 2. Eqguation (23) yields for the
Z-factor

_ n+2)(n+4

— 2
Zog=1 o v+ O{v). (24)
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Figure 2, Contribution to &, at first order in the 5¢ coupling. The hatched area represents
1=0.

We can now exploit the u independence of the bare Green functions
éf::i,w = (ZUZS')E/ZZ.? /Zz.:v /ZG%,N (25)
to obtain the renormalization group equations (RGEs)
[0 + (e + 8Kr) 3y + s34+ A0+ B0 + (o + 7O L/2 + vel /24 v N/AGE | =0
(26)
for the renormalized functions GZ . The ‘Wilson functions are defined as derivatives at

LY
fixed bare parameters:

d -
ya,=Ju,a InZ, (=0,55ruv Kr = Vs —¥r
0

Ky =2y —yu—€ ¢ =~ 1)/2
B = (=2 +3y; —n)v
and
Kyr = 2(1 4+ 03, )W with W = W /e + 0(1/€?).

At lowest non-trivial order we have
3n+22

B =v(—2¢+ 5 dv + 0%}

_(n + 2)(n+4) v* 3

Vo= 5 45 TOW)
16(n + 2)(n +4) v* 3

=t T 10

¢ 15 75 7O

+ 4 8v

P ”S ?+0(v2)
+22

Kur=n3 §+O(U)

¢ =31 =)y +0(%)
¥ = (61 — )y + 00

_(n+2)(n+4)

2
sz 0T O

Yo
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Below three dimensions the coupling coefficient v possesses the non-trivial fixed point

_5_e
T 2 3n+22

Uy

+ 0D _ (28)

and the solution of the RGE (26) in conjunction with dimensional analysis yields the scaling
behaviour

Gf\:i,N o, 1} T, 0, vl Ay ) = JElm T2+ N /2N 0/ 2 (L NY(d+2) (26N (d—2)/2
x GE (e, Bry 17, 7%, 0,5 2, 1) (29)

with the well-known [13, 14] tricritical indices

_ . 4n+2)n+4) , 3
Ye=2—kr=2 3Gn £ )7 €+ O(e”) (30)
6—n
=1 —K*= O(e?
Je= 1=kl =1 g+ O() 31)
2 4) ¢?
n=y}= n+2)n+4) e + 0. (32)

(3n+22* 12
The scaling field = in equation (29) is defined as 7 = r + Au?, where

5(+2)1
§G—mu. (14 O(v,)). (33)

A= K—:u/(z.)?u - J’r) =

The dynamic scaling exponent z = 2 -+ ¢* = 2+ (7 — 5)/2 and the initial slip exponent
no = ¥y follow from equations (20) and (24), respectively:

z=2-4+cn+ 0 c =3I —1=10.945666 (34)
_r+Dr+4) € 9
=" mhim 25 TOE€) (33)

The autocorrelation function C(¢) = {s{z, Hs(x, 0)} = 1o (Fos(e, O} at the tricritical point
is given by

C(t) ~ ¢~ /¥ with &' = (2 —z — 1 — no/2)/z. (36}

For a one-component order parameter we have 6’ = —3¢/{40r) + O(e?). This prediction
may be checked by computer simulations as in [15].

In three dimensions, v, = 0, and the scaling behaviour is governed by mean-field
exponents with logarithmic corrections. The flow equation

3n+22
15

z%a(z) = b3(1)* + O b=4 (37)

leads asymptotically to the solution

() = 1/(bIn(1/D) forl < 1. (38)
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If we define scaling fields [1]

E(ﬁ' + 2y u?
+6(6—n)v 49
o = u/\o | (40)

the RGEs yield the scaling of the correlation functions {(up to non-universal factors)

G yUz. il T v b )

L e . = —~ga
— jW+sf4sDyz2 [E@] Gi‘w ({Zm,lzt}; T o(U{l)/v)E j(l);k,p,) an

v N l
where
go = (6 — n)/[2(3n +22)] (42}
a = (n+2)(n + 4)/[87(3n + 22)]. (43)

The scaling behaviour of the autocorrelation function at the tricritical point follows from
CQ) =wGy,@=0,£0,0,v; &, )

= 1pf? (?) Gy (@ = 0,22, 0,0, 5(); A, ). (44)

We now exploit equation (44) choosing [ ~ (Au?t)~1? « 1. The last condition means that
¢ has to be larger than a typical microscopic relaxation time #. In this way we get

C@) ~ =32 (Int /1))~ : ' (45)

So far we have only considered the case of a vanishing initial order parameter Mo = 0.
In order to study the decay of a non-zero order parameter notice that with rgs = 5p [3,4]
we have

M@ = {s(z, 1) = f DI, s)ste, tyexp(—T — H) (46)
and
HE = — f d“x MySo(z) + O(1/ ). | 47}

Thus we can write M(¢) in the scaling limit as a power series in Mp

M(r)-— K|f [de’xk_am(x Xivoooy Xgo £ T, 0, U3 A, ) ME

_ R METIOT
—;m_u]<@

X ééfl({q =0, 02} o/ B o (5 o) /LB 1, 1)

= o [@- PO, o/ 2, 6 (G0 fuy e /1, 50, Mo o) /. (48)

U -
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Choosing again ! ~ (Au2)~/2 « 1 we find at the tricritical point
M(s) = (In(t/10)) ™" Mo f (1'/*(In(2 /10)) ™ Mo, 3((1/1)™"*). (49)

Since for v — 0 only tree diagrams contribute to the Green functions, the scaling function
f (without the logarithmic corrections) can be calculated by mean-field theory. We have to
solve the differential equation

d Av

—d7M )= -—-5-!—M () (50
with the result

M(t) = Mp(1 + constant xvtMé)‘m. (51)
From this result we infer (up to non-universal factors)

174

M () = Mo(In(t/20)) ™ Fur ((ln(r 7 2‘0)) / (In(z/ fo))""Mo) (52)
with

Fiu(x) = 1/(1 + xHY* (53)

Hence the relaxation of the order parameter displays a crossover from the logarithmic
power law

Mz} ~ My(In(t/ 1))~ for t < Mg* (54)

to the long-time behaviour

—1/4
M) ~ for r > M7 55
® (Iﬁ(f/l‘o)) or s> Mo )
Below three dimensions a calculation as in [3,4] leads to the scaling form instead of
equation (52)

M(5) = Mo® fur (e Mo) (56)
with the exponent ' given in equation (36).

4. Conclusions

In this paper, we have studied the tricritical dynamics of a thermodynamic system with a
non-conserved order parameter, particularly the non-equilibrium relaxation, starting from an
initial state with short-range correlations.

For dimensions d < 3 the decay of an initial order parameter My # 0 can be described
by a universal scaling law which exhibits a crossover between two power laws. We have
calculated the new exponent #', which characterizes the short-time behaviour, to first order
in ¢ = 3 — d and obtained the dynamic scaling exponent z to second order in e.

In three dimensions the order parameter relaxation displays a crossover from purely
logarithmic behaviour at short times f < MD‘4 to a power law with a logarithmic correction
for ¢+ > My 4 This result may be applicable to antiferromagnets as e.g. dysprosium
aluminum garnet (DAG) in which the order parameter (staggered magnetization) couples
directly to an applied magnetic field along the [111] direction [16]. The induced staggered
magnetic field is necessary to prepare the initial value My % 0 of the order parameter.

Finally, we wish to point out that our results (for & = 2 as well as for d = 3) can be
verified by computer experiments.
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